Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 293
1.
iScience ; 27(5): 109763, 2024 May 17.
Article En | MEDLINE | ID: mdl-38706860

Many Gram-negative bacteria use type Ⅲ secretion system (T3SS) to inject effector proteins and subvert host signaling pathways, facilitating the growth, survival, and virulence. Notably, some bacteria harbor multiple distinct T3SSs with different functions. An extraordinary T3SS, the Escherichia coli Type III Secretion System 2 (ETT2), is widespread among Escherichia coli (E. coli) strains. Since many ETT2 carry genetic mutations or deletions, it is thought to be nonfunctional. However, increasing studies highlight ETT2 contributes to E. coli pathogenesis. Here, we present a comprehensive overview of genetic distribution and characterization of ETT2. Subsequently, we outline its functional potential, contending that an intact ETT2 may retain the capacity to translocate effector proteins and manipulate the host's innate immune response. Given the potential zoonotic implications associated with ETT2-carrying bacteria, further investigations into the structure, function and regulation of ETT2 are imperative for comprehensive understanding of E. coli pathogenicity and the development of effective control strategies.

3.
Am J Chin Med ; 52(2): 355-386, 2024.
Article En | MEDLINE | ID: mdl-38533569

Metabolic syndrome (MetS) represents a considerable clinical and public health burden worldwide. Mangiferin (MF), a flavonoid compound present in diverse species such as mango (Mangifera indica L.), papaya (Pseudocydonia sinensis (Thouin) C. K. Schneid.), zhimu (Anemarrhena asphodeloides Bunge), and honeybush tea (Cyclopia genistoides), boasts a broad array of pharmacological effects. It holds promising uses in nutritionally and functionally targeted foods, particularly concerning MetS treatment. It is therefore pivotal to systematically investigate MF's therapeutic mechanism for MetS and its applications in food and pharmaceutical sectors. This review, with the aid of a network pharmacology approach complemented by this experimental studies, unravels possible mechanisms underlying MF's MetS treatment. Network pharmacology results suggest that MF treats MetS effectively through promoting insulin secretion, targeting obesity and inflammation, alleviating insulin resistance (IR), and mainly operating via the phosphatidylinositol 3 kinase (PI3K)/Akt, nuclear factor kappa-B (NF-[Formula: see text]B), microtubule-associated protein kinase (MAPK), and oxidative stress signaling pathways while repairing damaged insulin signaling. These insights provide a comprehensive framework to understand MF's potential mechanisms in treating MetS. These, however, warrant further experimental validation. Moreover, molecular docking techniques confirmed the plausibility of the predicted outcomes. Hereafter, these findings might form the theoretical bedrock for prospective research into MF's therapeutic potential in MetS therapy.


Metabolic Syndrome , Xanthones , Humans , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Phosphatidylinositol 3-Kinases , Molecular Docking Simulation , Prospective Studies , Proto-Oncogene Proteins c-akt/metabolism
4.
J Adv Res ; 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38432394

INTRODUCTION: Baicalein, a bioactive component of Scutellaria baicalensis Georgi, has been shown to promote apoptosis in non-small cell lung cancer cells. However, previous studies have not determined if baicalein exerts proapoptotic effects by modulating the metabolic pathways. OBJECTIVE: To investigate if baicalein induces apoptosis in lung cancer cells by modulating the glutamine-mTOR metabolic pathway. METHODS: The in vivo anti-lung cancer activity of baicalein (50, 100, and 200 mg/kg) was evaluated using a xenograft model. In vitro experiments were used to assess the efficacy of baicalein (for H1299: 12.5, 25, and 50 µM; for A549: 10, 20, and 40 µM) on lung cancer cell proliferation, colony formation, and apoptosis. Metabolomics analysis was performed using liquid chromatography-mass spectrometry. The binding of baicalein to glutamine transporters and glutaminase was examined using molecular docking. The overexpression of glutamine transporters was validated using qRT-PCR and western blot analyses. The levels of ASCT2, LAT1, GLS1, p-mTOR, mTOR, and apoptosis-related proteins were evaluated using western blot analysis. RESULTS: Baicalein inhibited lung cancer xenograft tumor growth in vivo and suppressed proliferation and promoted apoptosis in lung cancer cells in vitro. Additionally, baicalein altered amino acid metabolites, especially glutamine metabolites, in H1299 and A549 cells. Mechanistically, baicalein interacted with glutamine transporters as well as glutaminase and inhibited their activation. The expression of mTOR, an apoptosis-related protein and downstream target of glutamine metabolism, was also inhibited by baicalein treatment. Importantly, we next demonstrated the suppression of mTOR signaling and the induction of apoptosis by baicalein were achieved by regulating glutamine metabolism. CONCLUSION: Baicalein inhibited the mTOR signaling pathway and induced apoptosis by downregulating glutamine metabolism. The potential of baicalein to induce apoptosis in lung cancer cells by selectively targeting the glutamine-mTOR pathway suggests an encouraging approach for treating lung cancer.

5.
Front Pharmacol ; 15: 1363346, 2024.
Article En | MEDLINE | ID: mdl-38389925

Amidst a global rise in lung cancer occurrences, conventional therapies continue to pose substantial side effects and possess notable toxicities while lacking specificity. Counteracting this, the incorporation of nanomedicines can notably enhance drug delivery at tumor sites, extend a drug's half-life and mitigate inadvertent toxic and adverse impacts on healthy tissues, substantially influencing lung cancer's early detection and targeted therapy. Numerous studies signal that while the nano-characteristics of lung cancer nanomedicines play a pivotal role, further interplay with immune, photothermal, and genetic factors exist. This review posits that the progression towards multimodal combination therapies could potentially establish an efficacious platform for multimodal targeted lung cancer treatments. Current nanomedicines split into active and passive targeting. Active therapies focus on a single target, often with unsatisfactory results. Yet, developing combination systems targeting multiple sites could chart new paths in lung cancer therapy. Conversely, low drug delivery rates limit passive therapies. Utilizing the EPR effect to bind specific ligands on nanoparticles to tumor cell receptors might create a new regime combining active-passive targeting, potentially elevating the nanomedicines' concentration at target sites. This review collates recent advancements through the lens of nanomedicine's attributes for lung cancer therapeutics, the novel carrier classifications, targeted therapeutic modalities and their mechanisms, proposing that the emergence of multi-target nanocomposite therapeutics, combined active-passive targeting therapies and multimodal combined treatments will pioneer novel approaches and tools for future lung cancer clinical therapies.

6.
Vaccines (Basel) ; 12(2)2024 Feb 04.
Article En | MEDLINE | ID: mdl-38400145

Salmonella Typhimurium (S. Typhimurium) is a zoonotic pathogen posing a threat to animal husbandry and public health. Due to the emergence of antibiotic-resistant strains, alternative prevention and control strategies are needed. Live attenuated vaccines are an ideal option that provide protection against an S. Typhimurium pandemic. To develop a safe and effective vaccine, double-gene mutations are recommended to attenuate virulence. In this study, we chose aroA and luxS genes, whose deletion significantly attenuates S. Typhimurium's virulence and enhances immunogenicity, to construct the double-gene mutant vaccine strain SAT52ΔaroAΔluxS. The results show that the mutant strain's growth rate, adherence and invasion of susceptible cells are comparable to a wild-type strain, but the intracellular survival, virulence and host persistence are significantly attenuated. Immunization assay showed that 106 colony-forming units (CFUs) of SAT52ΔaroAΔluxS conferred 100% protection against wild-type challenges; the bacteria persistence in liver and spleen were significantly reduced, and no obvious pathological lesions were observed. Therefore, the double-gene mutant strain SAT52ΔaroAΔluxS exhibits potential as a live attenuated vaccine candidate against S. Typhimurium infection.

7.
Adv Healthc Mater ; : e2303295, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38321619

The emerging antibiotic resistance has been named by the World Health Organization (WHO) as one of the top 10 threats to public health. Notably, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VREF) are designated as serious threats, whereas Clostridioides difficile (C. difficile) is recognized as one of the most urgent threats to human health and unmet medical need. Herein, they report the design and application of novel biodegradable polymers - the lipidated antimicrobial guanidinylate polycarbonates. These polymers showed potent antimicrobial activity against a panel of bacteria with fast-killing kinetics and low resistance development tendency, mainly due to their bacterial membrane disruption mechanism. More importantly, the optimal polymer showed excellent antibacterial activity against C. difficile infection (CDI) in vivo via oral administration. In addition, compared with vancomycin, the polymer demonstrated a much-prolonged therapeutic effect and virtually diminished recurrence rate of CDI. The convenient synthesis, easy scale-up, low cost, as well as biodegradability of this class of polycarbonates, together with their in vitro broad-spectrum antimicrobial activity and orally in vivo efficacy against CDI, suggest the great potential of lipidated guandinylate polycarbonates as a new class of antibacterial biomaterials to treat CDI and combat emerging antibiotic resistance.

8.
Phytochemistry ; 220: 114001, 2024 Apr.
Article En | MEDLINE | ID: mdl-38286200

Cycads, which primarily consist of the families Cycadaceae and Zamiaceae, possess intrinsic therapeutic attributes that are prominently expressed across their morphological spectrum, including roots, leaves, flowers, and seeds. In Chinese traditional medicine, the leaves of cycads are particularly revered for their profound healing capabilities. This meticulous review engages with existing literature on cycads and presents insightful avenues for future research. Over 210 phytoconstituents have been isolated and identified from various cycad tissues, including flavonoids, azoxy metabolites, sterols, lignans, non-proteogenic amino acids, terpenoids, and other organic constituents. The contemporary pharmacological discourse highlights the antineoplastic, antimicrobial, and antidiabetic activities inherent in these ancient plants, which are of particular importance to the field of oncology. Despite the prevalent focus on crude extracts and total flavonoid content, our understanding of the nuanced pharmacodynamics of cycads lags considerably behind. The notoriety of cycads derived toxicity, notably within the context of Guam's neurological disease cluster, has precipitated an established emphasis on toxicological research within this field. As such, this critical review emphasizes nascent domains deserving of academic and clinical pursuit, whilst nested within the broader matrix of current scientific understanding. The systematic taxonomy, traditional applications, phytochemical composition, therapeutic potential, and safety profile of cycads are holistically interrogated, assimilating an indispensable repository for future scholarly inquiries. In conclusion, cycads stand as a veritable treasure trove of pharmacological virtue, displaying remarkable therapeutic prowess and holding vast promise for ongoing scientific discovery and clinical utilization.


Botany , Medicine, Chinese Traditional , Humans , Seeds , Phytochemicals , Ethnopharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Phytotherapy
9.
J Funct Biomater ; 15(1)2024 Jan 14.
Article En | MEDLINE | ID: mdl-38248689

Nano-hydroxyapatite (HAp) is an ideal material in the field of biomedicine due to its good biocompatibility and bioactivity. However, a significant drawback of pure HAp materials is their inferior mechanical properties. Therefore, in this rigorous investigation, the optimal calcium-to-phosphorus ratio for the synthesis of HAp was meticulously delineated, followed by its nuanced modification using KH550 (γ-aminopropyltriethoxysilane). This was further amalgamated with polycaprolactone (PCL) with the aim of providing a superior material alternative within the domain of bone scaffold materials. The post-modified HAp demonstrated enhanced interfacial compatibility with PCL, bestowing the composite with superior mechanical characteristics, notably a peak bending strength of 6.38 ± 0.037 MPa and a tensile strength of 3.71 ± 0.040 MPa. Scanning electron microscope (SEM) imagery revealed an intriguing characteristic of the composite: an initial ascension in porosity upon HAp integration, subsequently followed by a decline. Beyond this, the composite not only exhibited stellar auto-degradation prowess but also realized a sustained release cycle of 24 h, markedly optimizing drug utility efficiency. A kinetic model for drug dispensation was developed, positing an adherence to a pseudo-second-order kinetic principle. In tandem, through the formulation of an intra-particle diffusion model, the diffusion mechanisms pre- and post-modification were deeply probed. Cytotoxicity assays underscored the composite's exemplary biocompatibility. Such findings accentuate the vast potential of the modified HAp-PCL composite in bone tissue engineering, heralding a novel and efficacious avenue for impending bone defect amelioration.

10.
Neural Netw ; 169: 75-82, 2024 Jan.
Article En | MEDLINE | ID: mdl-37857174

In the studies of Weakly Supervised Semantic Segmentation (WSSS) with image-level labels, there is an issue of incomplete semantic information, which we summarize as insufficient saliency semantic mining and neglected edge semantics. We proposes a two-stage framework, Saliency Semantic Full Mining-Edge Semantic Mining (SSFM-ESM), which views WSSS from the perspective of comprehensive information mining. In the first stage, we rely on SSFM to address the insufficient saliency semantic mining. The network learns feature representations consistent with salient regions via the proposed pixel-level class-agnostic distance loss. Then, the full saliency semantic information is mined by explicitly receiving pixel-level feedback. The initial pseudo-label with complete saliency semantic information can be obtained after the first stage. In the second stage, we focus on the mining of edge semantic information through the proposed edge semantic mining module. Specifically, we guide the initial pseudo-label avoid learning about false semantic information and obtain high-confidence edge semantics. The self-correction ability of the segmentation network is also fully utilized to obtain more edge semantic information. Extensive experiments are conducted on the PASCAL VOC 2012 and MS COCO 2014 datasets to verify the feasibility and superiority of this approach.


Learning , Semantics
11.
J Ethnopharmacol ; 321: 117505, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38016573

ETHNOPHARMACOLOGICAL RELEVANCE: Hypaconitine (HA), a diterpenoid alkaloid, mainly derived from Aconitum plants such as Acoitum carmichaeli Debx. And Aconitum nagarum Stapf., has recently piqued significant interest among the scientific community given its multifaceted attributes including anti-inflammatory, anticancer, analgesic, and cardio-protective properties. AIM OF THE STUDY: This review presents a comprehensive exploration of the research advancements regarding the traditional uses, pharmacology, pharmacokinetics, toxicity, and toxicity reduction of HA. It aims to provide a thorough understanding of HA's multifaceted properties and its potential applications in various fields. MATERIALS AND METHODS: A systematic literature search was conducted using several prominent databases including PubMed, Web of Science, NCBI, and CNKI. The search was performed using specific keywords such as "hypaconitine," "heart failure," "anti-inflammatory," "aconite decoction," "pharmacological," "pharmacokinetics," "toxicity," "detoxification or toxicity reduction," and "extraction and isolation." The inclusion of these keywords ensured a comprehensive exploration of relevant studies and enabled the retrieval of valuable information pertaining to the various aspects of HA. RESULTS: Existing research has firmly established that HA possesses a range of pharmacological effects, encompassing anti-cardiac failure, anti-inflammatory, analgesic, and anti-tumor properties. The therapeutic potential of HA is promising, with potential applications in heart failure, ulcerative colitis, cancer, and other diseases. Pharmacokinetic studies suggest that HA exhibits high absorption rates, broad distribution, and rapid metabolism. However, toxic effects of HA on the nerves, heart, and embryos have also been observed. To mitigate these risks, HA needs attenuation before use, with the most common detoxification methods being processing and combined use with other drugs. Extraction methods for HA most commonly include cold maceration, soxhlet reflux extraction, and ultrasonic-assisted extraction. Despite the potential therapeutic benefits of HA, further research is warranted to elucidate its anti-heart failure effects, particularly in vivo, exploring aspects such as in vivo metabolism, distribution, and metabolites. Additionally, the therapeutic effects of HA monomers on inflammation-induced diseases and tumors should be validated in a more diverse range of experimental models, while the mechanisms underlying the therapeutic effects of HA should be investigated in greater detail. CONCLUSION: This review serves to emphasize the therapeutic potential of HA and highlights the crucial need to address its toxicity concerns before considering clinical application. Further research is required to comprehensively investigate the pharmacological properties of HA, with particular emphasis on its anti-cardiac failure and anti-inflammatory activities. Such research endeavors have the potential to unveil novel treatment avenues for a broad spectrum of diseases.


Aconitum , Drugs, Chinese Herbal , Heart Failure , Humans , Drugs, Chinese Herbal/pharmacology , Anti-Inflammatory Agents , Analgesics
12.
Microbes Infect ; : 105276, 2023 Dec 09.
Article En | MEDLINE | ID: mdl-38072184

EF-hand proteins not only regulate biological processes, but also influence immunity and infection. In this review, we summarize EF-hand proteins' functions in host and zoonotic pathogens, with details in structures, Ca2+ affinity, downstream targets and functional mechanisms. Studies entitled as EF-hand-related but with less solid features were also discussed. We believe it could raise cautions and facilitate proper research strategy for researchers.

13.
Natl Sci Rev ; 10(10): nwad228, 2023 Oct.
Article En | MEDLINE | ID: mdl-37965675

Understanding changes in pathogen behavior (e.g. increased virulence, a shift in transmission channel) is critical for the public health management of emerging infectious diseases. Genome degradation via gene depletion or inactivation is recognized as a pathoadaptive feature of the pathogen evolving with the host. However, little is known about the exact role of genome degradation in affecting pathogenic behavior, and the underlying molecular detail has yet to be examined. Using large-scale global avian-restricted Salmonella genomes spanning more than a century, we projected the genetic diversity of Salmonella Pullorum (bvSP) by showing increasingly antimicrobial-resistant ST92 prevalent in Chinese flocks. The phylogenomic analysis identified three lineages in bvSP, with an enhancement of virulence in the two recently emerged lineages (L2/L3), as evidenced in chicken and embryo infection assays. Notably, the ancestor L1 lineage resembles the Salmonella serovars with higher metabolic flexibilities and more robust environmental tolerance, indicating stepwise evolutionary trajectories towards avian-restricted lineages. Pan-genome analysis pinpointed fimbrial degradation from a virulent lineage. The later engineered fim-deletion mutant, and all other five fimbrial systems, revealed behavior switching that restricted horizontal fecal-oral transmission but boosted virulence in chicks. By depleting fimbrial appendages, bvSP established persistent replication with less proinflammation in chick macrophages and adopted vertical transovarial transmission, accompanied by ever-increasing intensification in the poultry industry. Together, we uncovered a previously unseen paradigm for remodeling bacterial surface appendages that supplements virulence-enhanced evolution with increased vertical transmission.

14.
bioRxiv ; 2023 Sep 22.
Article En | MEDLINE | ID: mdl-37790331

Duplication 15q (dup15q) syndrome is the most common genetic cause of autism spectrum disorder (ASD). Due to a higher genetic and phenotypic homogeneity compared to idiopathic autism, dup15q syndrome provides a well-defined setting to investigate ASD mechanisms. Previous bulk gene expression studies identified shared molecular changes in ASD. However, how cell type specific changes compare across different autism subtypes and how they change during development is largely unknown. In this study, we used single cell and single nucleus mRNA sequencing of dup15q cortical organoids from patient iPSCs, as well as post-mortem patient brain samples. We find cell-type specific dysregulated programs that underlie dup15q pathogenesis, which we validate by spatial resolved transcriptomics using brain tissue samples. We find degraded identity and vulnerability of deep-layer neurons in fetal stage organoids and highlight increased molecular burden of postmortem upper-layer neurons implicated in synaptic signaling, a finding shared between idiopathic ASD and dup15q syndrome. Gene co-expression network analysis of organoid and postmortem excitatory neurons uncovers modules enriched with autism risk genes. Organoid developmental modules were involved in transcription regulation via chromatin remodeling, while postmortem modules were associated with synaptic transmission and plasticity. The findings reveal a shifting landscape of ASD cellular vulnerability during brain development.

15.
Sensors (Basel) ; 23(20)2023 Oct 22.
Article En | MEDLINE | ID: mdl-37896720

Gait recognition aims to identify a person based on his unique walking pattern. Compared with silhouettes and skeletons, skinned multi-person linear (SMPL) models can simultaneously provide human pose and shape information and are robust to viewpoint and clothing variances. However, previous approaches have only considered SMPL parameters as a whole and are yet to explore their potential for gait recognition thoroughly. To address this problem, we concentrate on SMPL representations and propose a novel SMPL-based method named GaitSG for gait recognition, which takes SMPL parameters in the graph structure as input. Specifically, we represent the SMPL model as graph nodes and employ graph convolution techniques to effectively model the human model topology and generate discriminative gait features. Further, we utilize prior knowledge of the human body and elaborately design a novel part graph pooling block, PGPB, to encode viewpoint information explicitly. The PGPB also alleviates the physical distance-unaware limitation of the graph structure. Comprehensive experiments on public gait recognition datasets, Gait3D and CASIA-B, demonstrate that GaitSG can achieve better performance and faster convergence than existing model-based approaches. Specifically, compared with the baseline SMPLGait (3D only), our model achieves approximately twice the Rank-1 accuracy and requires three times fewer training iterations on Gait3D.


Gait , Walking , Humans , Knowledge , Linear Models , Physical Distancing
16.
Science ; 382(6667): eadf0834, 2023 10 13.
Article En | MEDLINE | ID: mdl-37824647

We analyzed >700,000 single-nucleus RNA sequencing profiles from 106 donors during prenatal and postnatal developmental stages and identified lineage-specific programs that underlie the development of specific subtypes of excitatory cortical neurons, interneurons, glial cell types, and brain vasculature. By leveraging single-nucleus chromatin accessibility data, we delineated enhancer gene regulatory networks and transcription factors that control commitment of specific cortical lineages. By intersecting our results with genetic risk factors for human brain diseases, we identified the cortical cell types and lineages most vulnerable to genetic insults of different brain disorders, especially autism. We find that lineage-specific gene expression programs up-regulated in female cells are especially enriched for the genetic risk factors of autism. Our study captures the molecular progression of cortical lineages across human development.


Brain Diseases , Cerebral Cortex , Neurons , Female , Humans , Infant, Newborn , Pregnancy , Brain Diseases/genetics , Cerebral Cortex/growth & development , Gene Regulatory Networks , Interneurons/metabolism , Neurons/metabolism , Single-Cell Analysis , Male , Risk Factors
17.
Front Cell Infect Microbiol ; 13: 1253815, 2023.
Article En | MEDLINE | ID: mdl-37743864

The inappropriate use of antibiotics has led to the emergence of multidrug-resistant strains. Bacteriophages (phages) have gained renewed attention as promising alternatives or supplements to antibiotics. In this study, a lytic avian pathogenic Escherichia coli (APEC) phage designated as PEC9 was isolated and purified from chicken farm feces samples. The morphology, genomic information, optimal multiplicity of infection (MOI), one-step growth curve, thermal stability, pH stability, in vitro antibacterial ability and biofilm formation inhibition ability of the phage were determined. Subsequently, the therapeutic effects of the phages were investigated in the mice model. The results showed that PEC9 was a member of the siphovirus-like by electron microscopy observation. Biological characterization revealed that it could lyse two serotypes of E. coli, including O1 (9/20) and O2 (6/20). The optimal multiplicity of infection (MOI) of phage PEC9 was 0.1. Phage PEC9 had a latent period of 20 min and a burst period of 40 min, with an average burst size of 68 plaque-forming units (PFUs)/cell. It maintained good lytic activity at pH 3-11 and 4-50°C and could efficiently inhibit the bacterial planktonic cell growth and biofilm formation, and reduce bacterial counts within the biofilm, when the MOI was 0.01, 0.1, and 1, respectively. Whole-genome sequencing showed that PEC9 was a dsDNA virus with a genome of 44379 bp and GC content of 54.39%. The genome contains 56 putative ORFs and no toxin, virulence, or resistance-related genes were detected. Phylogenetic tree analysis showed that PEC9 is closely related to E. coli phages vB_EcoS_Zar3M, vB_EcoS_PTXU06, SECphi18, ZCEC10, and ZCEC11, but most of these phages exhibit different gene arrangement. The phage PEC9 could successfully protect mice against APEC infection, including improved survival rate, reduced bacterial loads, and organ lesions. To conclude, our results suggest that phage PEC9 may be a promising candidate that can be used as an alternative to antibiotics in the control of APEC infection.


Bacteriophages , Escherichia coli Infections , Animals , Mice , Escherichia coli , Phylogeny , Escherichia coli Infections/therapy , Escherichia coli Infections/veterinary , Anti-Bacterial Agents/pharmacology , Birds
18.
J Integr Plant Biol ; 65(11): 2437-2455, 2023 Nov.
Article En | MEDLINE | ID: mdl-37665103

Salt stress is a major abiotic stress which severely hinders crop production. However, the regulatory network controlling tomato resistance to salt remains unclear. Here, we found that the tomato WRKY transcription factor WRKY57 acted as a negative regulator in salt stress response by directly attenuating the transcription of salt-responsive genes (SlRD29B and SlDREB2) and an ion homeostasis gene (SlSOS1). We further identified two VQ-motif containing proteins SlVQ16 and SlVQ21 as SlWRKY57-interacting proteins. SlVQ16 positively, while SlVQ21 negatively modulated tomato resistance to salt stress. SlVQ16 and SlVQ21 competitively interacted with SlWRKY57 and antagonistically regulated the transcriptional repression activity of SlWRKY57. Additionally, the SlWRKY57-SlVQ21/SlVQ16 module was involved in the pathway of phytohormone jasmonates (JAs) by interacting with JA repressors JA-ZIM domain (JAZ) proteins. These results provide new insights into how the SlWRKY57-SlVQ21/SlVQ16 module finely tunes tomato salt tolerance.


Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Growth Regulators/metabolism , Salt Tolerance/genetics , Gene Expression Regulation, Plant , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
19.
PLoS Pathog ; 19(9): e1011693, 2023 Sep.
Article En | MEDLINE | ID: mdl-37738264

Previously we reported that the HSV-1 latency associated transcript (LAT) specifically upregulates the cellular herpesvirus entry mediator (HVEM) but no other known HSV-1 receptors. HSV-1 glycoprotein D (gD) binds to HVEM but the effect of this interaction on latency-reactivation is not known. We found that the levels of latent viral genomes were not affected by the absence of gD binding to HVEM. However, reactivation of latent virus in trigeminal ganglia explant cultures was blocked in the absence of gD binding to HVEM. Neither differential HSV-1 replication and spread in the eye nor levels of latency influenced reactivation. Despite similar levels of latency, reactivation in the absence of gD binding to HVEM correlated with reduced T cell exhaustion. Our results indicate that HVEM-gD signaling plays a significant role in HSV-1 reactivation but not in ocular virus replication or levels of latency. The results presented here identify gD binding to HVEM as an important target that influences reactivation and survival of ganglion resident T cells but not levels of latency. This concept may also apply to other herpesviruses that engages HVEM.


Herpesvirus 1, Human , Herpesvirus 1, Human/physiology , Receptors, Tumor Necrosis Factor, Member 14/genetics , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Eye , Virus Replication , Virus Latency/physiology
20.
Nature ; 622(7981): 112-119, 2023 Oct.
Article En | MEDLINE | ID: mdl-37704727

The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.


Proteomics , Synapses , Adolescent , Animals , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Mice , Young Adult , Cognition/physiology , Dendritic Spines , Gestational Age , Macaca , Neurons/metabolism , Post-Synaptic Density/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , Species Specificity , Synapses/metabolism , Synapses/physiology
...